A Converse to Lieb–Robinson Bounds in One Dimension Using Index Theory
نویسندگان
چکیده
Abstract Unitary dynamics with a strict causal cone (or “light cone”) have been studied extensively, under the name of quantum cellular automata (QCAs). In particular, QCAs in one dimension completely classified by an index theory. Physical systems often exhibit only approximate cones; Hamiltonian evolutions on lattice satisfy Lieb–Robinson bounds rather than locality. This motivates us to study approximately locality preserving unitaries (ALPUs). We show that theory is robust and extends one-dimensional ALPUs. As consequence, we achieve converse bounds: any ALPU zero can be exactly generated some time-dependent, quasi-local constant time. For special case finite chains open boundaries, unitary satisfying bound may such Hamiltonian. also discuss results stability operator algebras which independent interest.
منابع مشابه
Bounds on Scattering Poles in One Dimension
For the class of super-exponentially decaying potentials on the real line sharp upper bounds on the counting function of the poles in discs are derived and the density of the poles in strips is estimated. In the case of nonnegative potentials, explicit estimates for the width of a pole-free strip are obtained.
متن کاملEnergy band correction due to one dimension tension in phosphorene
Among graphene-like family, phosphorene is a typical semiconducting layered material, which can also be a superconductor in low temperature. Applying pressure or tension on phosphorene lattice results in changing the hopping terms, which change the energy bands of the material. In this research we use the tight-binding Hamiltonian, including relevant hopping terms, to calculate energy bands of ...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
A Priori Bounds for Co-dimension One Isometric Embeddings
Let X : (S, g) → R be a C isometric embedding of a C 4 metric g of non-negative sectional curvature on S into the Euclidean space R. We prove a priori bounds for the trace of the second fundamental form H , in terms of the scalar curvature R of g, and the diameter d of the space (S, g). These estimates give a bound on the extrinsic geometry in terms of intrinsic quantities. They generalize esti...
متن کاملDynamical theory of superfluidity in one dimension.
A theory accounting for the dynamical aspects of the superfluid response of one dimensional (1D) quantum fluids is reported. In long 1D systems, the onset of superfluidity is related to the dynamical suppression of quantum phase slips at low temperatures. The effect of this suppression as a function of frequency and temperature is discussed within the framework of the experimentally relevant mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Henri Poincaré
سال: 2022
ISSN: ['1424-0661', '1424-0637']
DOI: https://doi.org/10.1007/s00023-022-01193-x